
J .  Fluid Mech. (1987), vol. 182, p p .  2345  
Printed in Great Britain 

23 

A finite-element study of the onset 
of vortex shedding in flow past variously 

shaped bodies 

By C. P. JACKSON 
Theoretical Physics Division, Harwell Laboratory, Didcot OX1 1 ORA, UK 

(Received 19 May 1986 and in revised form 13 January 1987) 

The onset of periodic behaviour in two-dimensional laminar flow past bodies of 
various shapes is examined by means of finite-element simulations. The transition 
from steady to periodic flow is marked by a Hopf bifurcation, which we locate by 
solving an appropriate extended set of steady-state equations. The bodies considered 
are a circular cylinder, triangular prisms of various shapes, and flat plates and 
elliptical cylinders aligned over a range of angles to the direction of flow. Our results 
for the circular cylinder are in good agreement with experimental observations and 
with the results of time-dependent calculations. 

1. Introduction 
Flow of a fluid past a body is a very complicated phenomenon, which can be 

characterized only by means of many parameters (Batchelor 1967; Dyke 1982; 
Tritton 1977). The most important of these is the Reynolds number Re, which is a 
dimensionless measure of the relative velocity of the fluid and the body. The 
behaviour of such flows when Re is increased is illustrated by the flow past a circular 
cylinder, which is shown schematically in figure 1 (a-e). At very low Re the flow is 
laminar, steady, and does not separate from the cylinder. At  Re of about 6 the flow 
separates from the cylinder, but is still steady and laminar. At Re of about 50 the 
flow becomes time-dependent with the wake oscillating periodically. At higher values 
of Re vortices or localized regions of high vorticity are shed alternately from either 
side of the cylinder and are convected downstream. As Re is increased still further 
more frequencies enter the spectrum of the flow velocities and ultimately the flow 
becomes turbulent. 

The periodic flow is worthy of examination both in studying the approach to 
turbulence and in its own right. Periodic flow leads to oscillatory forces on the body 
and hence to vibrations, which can be of considerable practical importance. Such 
vibrations occur, for example, during flow past heat-exchanger bundles, wind flow 
past chimneys, and flow past marine structures. 

The transition to periodic behaviour as Re is varied corresponds to a Hopf 
bifurcation (Marsden & McCracken 1976) where an eigenvalue of the Jacobian matrix 
of the flow equations crosses the imaginary axis. We have employed finite-element 
simulation to examine the onset of periodic flows about various body shapes. 
However, we have not had recourse to time-dependent simulations, but have instead 
made direct calculations of the eigenvalues that characterize the transition to periodic 
flow ; most importantly, we have exploited extended systems of equations for locating 
Hopf bifurcations. This latter approach leads to steady-state equations whose 
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FIGURE 1 .  Schematic dependence on Re of the flow past a circular cylinder. (a)  very low Re: no 
separation, ( b )  6 5 Re < 50: separation, (c) 50 5 Re: periodic wake, (d)  vortex shedding at Re 
significantly greater than 50, ( e )  turbulence at very large Re. 

solution includes the frequency of oscillation together with the critical Re at which 
steady flow becomes unstable and periodic flow begins. This approach is therefore 
complementary to  the normal method of studying oscillatory behaviour by time- 
dependent calculation. By solving the appropriate extended equations the actual 
bifurcation point can be determined extremely accurately, and the variation of the 
bifurcation point with other parameters can readily be studied ; moreover, this 
approach is much cheaper than transient calculations. However, i t  obviously does 
not reveal directly how the flow changes with time. 

I n  $2 we describe the theory that underlies our studies, including the basic flow 
equations, the techniques used to  solve them, stability, the eigenvalue calculation 
and the extended system for calculating Hopf points. In  $3  we describe our 
calculations of the onset of periodic flow about circular and elliptic cylinders, 
triangular prisms and flat plates. In  $4 we comment upon the results and in $5 
summarize the principal conclusions. 
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2. Theory 
2.1. Equations 

The basic equations describing laminar incompressible flow in two dimensions are the 
Navier-Stokes equations. These may be expressed in non-dimensional form by 
choosing a lengthscale L, in the x-direction, L, in the y-direction, a velocity scale 
V ,  and a pressure scale P = pV2 where p is the density. This leads to 

where x, y are the non-dimensional coordinates, u is the non-dimensional velocity in 
the x-direction, v is the non-dimensional velocity in the y-direction, r is the aspect 
ratio (r = LJL,), Re is the Reynolds number (Re = pVL,/,uuf where ,uf is the fluid 
viscosity). Separate lengthscales were chosen deliberately for the x- and y-directions 
so that the aspect ratio r appears explicitly in the equations. Subsequently we shall 
vary Tas a convenient means of distorting a circular into an elliptical body, and hence 
are able to follow the resulting changes in flow by a parameter-stepping technique. 

2.2. Steady-state solution and parameter stepping 

We approximate the steady-state equations derived from (1)  (and also the time- 
dependent equations) by a standard Galerkin formulation of the finite-element 
method. The nonlinear equations arising from this discretization may be written in 
the general form 

where X is the solution vector (of unknown velocities and pressures), h is a specific 
parameter (Re in the present case), and p is the vector of the remaining parameters 
(including r in this case). The nonlinear equations (2) are solved by successive 
Newton-Raphson iteration : 

g(X; A, p )  = 0, (2) 

d P  = X n + l - P ,  

g , ( p ; A , P ) d p  = -g(P;A,p), (3) 

where g, = ag/aXis the Jacobian matrix. These iterations continue until convergence 
is satisfactory. We usually converge the results to 8 significant figures. A t  each step 
a direct frontal solver is applied to the set of linear equations (3), so that g, is 
decomposed into a product 

gx = LU, (4) 

where L and U are respectively lower and upper triangular matrices. The computation 
of dxt by successive solution of the sets of linear equations 

is straightforward and incurs little expense. 



26 C .  P .  Jackson 

The most demanding step in this procedure is the LU decomposition of gx at each 
iteration; the cost is proportional to N P ,  where N is the total number of unknowns, 
and F is the front width of the problem. However, the LU decomposition does not 
involve the right-hand side of (3), so that i t  is then very cheap to solve for additional 
right-hand sides for any specific matrix. This advantage is exploited in parameter 
stepping as follows. The Newton-Raphson iterations converge quadratically, pro- 
vided that the initial guess is close enough to the solution, but may not converge if 
the initial guess is not good enough. Now once the solution XI at one parameter value 
A, has been found, then a very good initial guess at  parameter value A, can be obtained 
from the expression 

The derivative vector aX,/aA can be readily calculated since it satisfies 

this equation resembles (3), but with a different right-hand side. However, the 
Jacobian matrix g, will have already been calculated and decomposed in order to 
carry out the final Newton-Raphson iteration that provided the converged solution 
XI. As a result, (7) can be solved very cheaply and hence the parameter-stepping 
expression (6) evaluated. Thus flow solutions at  a set of parameter values may be 
obtained much more economically by parameter stepping than by beginning each 
calculation from a fixed initial guess, from which iterations may well fail to converge 
to a solution. 

2.3. Stability 
The time-dependent discretized equations can be written as 

MX+g(X; h , p )  = 0 ,  (8) 

where M is a 'mass matrix ', which is of course singular in the current example. The 
evolution of small perturbations E from a steady solution X, is described to lowest 
order by the linear equation 

If 5 is a generalized eigenvector of gx with eigenvalue r, such that 

Md+gx(Xo;A,p)E = 0 .  (9) 

9x5 = (10) 

& = E 0 c-"t 67 (11) 

and if E is a perturbation along <, then 

where eo is the component of E along 6 a t  t = 0. Thus small perturbations about a 
given steady state Xo will decay if all the generalized eigenvalues of g, have positive 
real part; this criterion ensures that the steady state is stable. If, however, one or 
more eigenvalues have a negative real part, then the steady solution is unstable, since 
a perturbation along the appropriate eigenvector is unbounded (at least in the linear 
approximation). 

As the parameter h is varied, a steady solution may lose stability in one of two 
ways. The eigenvalue that gives rise to the loss of stability may cross the imaginary 
axis with zero imaginary part. This case corresponds either to a limit point or to a 
bifurcation to another steady solution. Alternatively the eigenvalue may cross the 
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imaginary axis at a finite imaginary value iw ; this Hopf bifurcation marks a transition 
to a periodic solution with angular frequency w and period 2 x 1 ~ ;  however, a Hopf 
bifurcation must also satisfy additional criteria, of which the most important is that 
other eigenvalues do not simultaneously cross the imaginary axis at an integral 
multiple of iw. For present purposes it is convenient to employ a non-dimensional 
measure of the frequency, that is the Strouhal number 

w 4 4  St = --. 
27c v 

2.4. Eigenvalue calculation 

The matrices involved in solving typical flow simulations are very large, so the LR, 
QR or similar algorithms for calculating eigenvalues are prohibitively expensive. 
Moreover, such techniques are not applicable to the general case when g, is not 
symmetric and M is not the identity. Instead we have used several techniques for 
determining generalized eigenvalues and eigenvectors that are based on the concept 
of inverse iteration (Wilkinson 1965). 

Inverse iteration is best illustrated by means of the generalized eigenvalue problem 

A t  = aB{ ; (13) 

(er)T.{ = 1, (14) 

we shall adopt as a convenient normalization for the generalized eigenvectors 5 

where er is the unit vector with components (er) ,  = dtr. The Newton-Raphson method 
applied to this problem provides the iteration scheme 

(er)T*dCn = 0. I 
This scheme may be realized by solving successively 

The first step of (16) requires an LU decomposition of A-anB, as in $2.2. The 
entire procedure may be implemented by means of a simple modification to a 
fmite-element package, which is altered so that the standard matrix-assembly 
routines calculate A-anB; in our particular problem this change amounts to 
calculating gx-anM rather than g,. If an is updated according to (l6),  then the 
matrix A - a"B becomes increasingly singular. However, it is easy to see that the 
matrix of the augmented system (15), which may be written 

is not singular. This latter scheme with an augmented matrix can also be implemented 
in a standard finite-element package, although it requires more substantial modifi- 

2 P L Y  182 
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cations to  the package than does (16). The two schemes are of course equivalent in 
infinite-precision arithmetic, and both converge quadratically. 

If u is not updated but rather is kept fixed say at uo, then successive iterations 
of (1 6) or (17) are relatively cheap, since the LU decomposition of A -go B only needs 
to be carried out once. This iterative scheme converges linearly to the eigenvector 
corresponding to the eigenvalue nearest to go, but the rate of convergence may be 
very slow indeed if there are several eigenvalues close to go. Moreover, the scheme 
produces only one eigenvector and eigenvalue for a particular choice of uo. 

However, the convergence rate may be improved, and also several eigenvectors 
and eigenvalues determined simultaneously, by subspace iteration ; that is by 
applying (A - uo B)-l repeatedly to a set of m vectors [el, . . . ,{"I. Without loss of 
generality we may re-order the components of the vectors and matrices so that the 
'normalization' for the set of vectors is 

Given any un-normalized, linearly independent set of vectors [{'i, . . . , {'"I, they can 
be normalized according to (18) by means of the recursion 

. ri  ra = (5"i)i 

From such a normalized set of m vectors [el, .. .,<"I, we calculate [ q l , .  . . ,q"] 
(un-normalized) such that 

(20 1 
Then we define m x m matrices E and N that  comprise the first m rows of [{l,. . . , {"I 
and [ql ,  . . . , q"] respectively, so Eii = and Hii = ( @ ) i .  The matrix K,  which is 
defined by 

can be calculated recursively : 

(A -go B)-'B[{l, . . . ,5"] = [q', . . . , q"]. 

EK = H, (21) 

and its eigenvalues obtained. Since K is comparatively small and an eigenvalue rather 
than a generalized eigenvalue is sought, any available algorithm may be used to  
obtain the eigenvalues of K.  The sequence of steps (19)-(22) comprise one iteration 
of the subspace iteration algorithm, which would start again from [q', . . . , q"]. The 
iterations are repeated until satisfactory convergence is achieved. Then if K has an 
eigenvector 4 with eigenvalue h a t  convergence, it is easy to see that 

. . . , <"I4 (23) 

is a generalized eigenvector of A with eigenvalue a,+(l/h), where of course 
[{l, . . . ,{"I is taken from the final iteration. 

Such subspace iteration yields the m generalized eigenvalues nearest to  uo, and the 
corresponding generalized eigenvectors. Complex pairs may be included, but of course 
only those that are near to the real value go. However, the techniques described can 
be extended so as to identify the eigenvalue or eigenvalues nearest to an arbitrary 
complex number go; i t  is necessary only to work throughout with complex numbers, 
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or more conveniently with ordered pairs (a, b) corresponding to a + ib. Thus a complex 
generalized eigenvector (&, ti) = 5, + i& with complex eigenvalue (ur, ui) = a, + iui 
satisfies 

(24) 
or equivalently 

A(& + iti) = (ur + iui) B(4, + iti) ; 

A& = urBtr-uiBTi,l 
At,  = uiBtr+urBCi*j (25) 

The techniques for finding eigenvalues and eigenvectors that we have described can 
be readily extended so as to cope with these latter equations. However, of course, 
the iterative schemes involve operations with a matrix twice the size of the matrix 
in (16), and so the cost of the LU decomposition is eight times larger. The approach 
based upon complex arithmetic requires an LU decomposition that costs only four 
times that for the matrix in (16), but of course it is necessary to provide a complex 
frontal solver, and hence to make greater changes to a standard finite-element code. 

2.5. The extended system for locating a Hopf bifurcation 
At the Hopf bifurcation point a complex pair of eigenvalues with non-zero imaginary 
parts crosses the imaginary axis. That bifurcation is the solution of the following 
extended system (Griewank & Reddien 1983 ; Jepson 1981) of equations: 

we solve for the flow X, for the angular frequency w ,  for the real and imaginary parts 
5, and ti of the bifurcating eigenvector, and for the critical value of one specific 
parameter (Re in this case), at prescribed values of all the other parameters. This 
extended system of equations is solved by means of Newton-Raphson linearization 
and a frontal solver, as described in $2.2. At first sight it might seem that this 
procedure leads to a matrix that is approximately three times as large as the matrix 
in $2.2, with a front width three times as large ; hence the necessary LU decomposition 
might cost twenty-seven times as much as the LU decomposition for the simple flow 
problem. However, the extended system can in fact be solved by a much cheaper 
two-step process, for about one-third this cost. The Newton-Raphson linearization 
of (26) leads to 

I 
gx dX+g, dh = -8, 

gxx 6, dX+ gx, tr dh + gx d{, + w M  dti + dwMt, + wMA ti dh = - (9, t r  + W M T i ) ,  

gx,tidX+gxAtidA+gxd~i-wMdt,-dwMr,-wM, 5rdh = -(gzti-wM<r)t  

(ek)T-dt, = 0, 

= 0, I 
(27) 

where by gxx t, dX we mean (azg/aXi ax,) <,., dX, (using the summation con- 
vention) and similarly for the other terms. 

If we now evaluate 
a = -g1;’g, p = -g-1 X g A 7  (28) 

and substitute dX= a+dAp, (29) 
2.2 
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into the last four equations of (27), then 

(ek)T.d<r = 0, 

= 0. 

These equations can be solved for dtr ,  dt,, do  and dh, and then finally dX can be 
calculated from (29). The solution of both the simple flow problem and the equations 
(28) requires the LU decomposition of g,. The cost of the LU decomposition of the 
matrix A* of the set of equations (30), which matrix is twice as large as g, and has 
twice the front width, is approximately eight times greater. Thus the total cost of 
solving the extended equations (27) is about nine times that of the basic flow 

- calculation. 
Of course the extended equations (26) may be regarded as a larger system: 

f ( Y ; a )  = 0 ,  (31) 

where Y =  (x,Tr,<iTo,h); (32) 

we may therefore parameter step for this system, varying the parameter p. 

3. Computations 
3.1 . Finite elements 

We have investigated the onset of vortex shedding, that is periodic behaviour, for 
flow past circular and elliptical cylinders, triangular prisms and flat plates. In 
discussing our two-dimensional calculations, it  is convenient to refer to these bodies 
as circles, ellipses, triangles and plates, since this is their appearance in the 
computational domain. 

Our calculations were performed with the finite-element program TGSL (Jackson 
1982), which includes all the algorithms discussed above. The velocities were 
interpolated by the standard nine-node biquadratic quadrilateral isoparametric 
element, whereas the pressure was represented by a piecewise discontinuous linear 
function. 

In order to avoid complications with boundary conditions at  infinity, a specific 
finite domain was defined; in terms of a scale in which one dimension of the body 
is one, and taking T = 1, this domain is defined thus : 

- 5 < ~ < 1 5 ,  - 5 < y < 5 ,  (33) 

where the x-direction is parallel to the flow. This domain is illustrated in figure 2 for 
a circular body, with the diameter set to one to define the lengthscale. In some sense, 
of course, this problem is closer to experiment than the infinite-domain problem, since 
most experiments are carried out in finite tanks or wind-tunnels. (We intend in 
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FIQURE 2. Computational domain for a circular cylinder. 

subsequent work to explore the effects of domain size.) We chose boundary conditions 
as follows : 

on the left-hand inlet and along the top and bottom of the domain I u = l ,  v = o ;  

on the body u = o ,  v = o ;  

and at  the outlet on the right-hand side of the domain 

au av 
- + p = o ,  ax -=o .  ax 

(34) 

These boundary conditions correspond more or less to ‘tow tank ’ conditions. The 
outlet boundary conditions were chosen to impose as little constraint as possible on 
the flow calculation, to allow possible periodic flow to ‘escape’ from the domain. 

We also made calculations for: 
(i) ellipses oriented along the flow with axis a,, along the direction of flow and axis 

(ii) ellipses with major axis 1 and minor axis 0.5 oriented at various angles 8 to 

(iii) flat plates of length 1 with normal at various orientations 0 to the flow; and 
(iv) isosceles triangles with base 1 and height h, with apex towards the flow. 
The geometry of these other body shapes is shown in figure 3. It should be noted 

that one dimension of the body is 1 in each case. This dimension of course corresponds 
to the lengthscale that was used to define the Reynolds number. We may express 
the Reynolds number in terms of physical dimensional quantities as follows : 

(i) for an ellipse oriented along the flow, with dimensional axes a; along the flow 

1 perpendicular to the flow; 

the flow ; 

and a; perpendicular to the flow we have 
P V a l .  

Pf ’ 
Re = - 

(ii) for an ellipse with dimensional major axis akaj and minor axis akin ( = 0.5akaj) 
with the minor axis oriented at an angle 8 to the flow we have 

Re = @$Sd; 
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Flow 

Flow - 

Flow 

FIGURE 3. Geometry of the various bodies considered: (a) ellipse oriented along the Aow, (b) ellipse 
oriented at an angle to the Aow, (c) flat plate oriented at an angle to the flow (d )  isosceles triangle 
oriented symmetrically about the flow. 

(iii) for a flat plate of dimensional length L‘ with normal at an angle 0 to the flow 

p VL’ 

PP ’ 

we have 
Re = -. 

(iv) for an isosceles triangle with dimensional base b’ and height h’ we have 

Pm’. 
Pf 

Re = -, 

where V is of course the velocity relative to the body of the fluid at infinity. In the 
case of the ellipse and flat, plate oriented at an angle to the flow we also define a 
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Reynolds number ReD based on the length D presented by the body normal to the 
flow. For the ellipse we have 

ReD = Recos8 ( 1 +  (ziy - tan2 o)', 

where amaj and amin are respectively the major and minor axis of the ellipse ; and for 
the flat plate we have 

ReD = Re cos8. 

The basic finite-element grid used for studying the flow past a circular body is 
shown in figure 4. This grid has 736 elements, 3056 nodes and 8320 degrees of freedom 
for the velocities and pressure. The grids used for the other body shapes were obtained 
by a suitable mapping of this grid. For example, figure 5 shows a detail of the grid 
used to study flow past an ellipse with major and minor axes 1 and 0.5 respectively, 
with the ellipse oriented at an angle of 60" to the flow. 

The calculation for the circular body was repeated on a finer grid in order to check 
the grid dependence of the results. A very fine grid was obtained by subdividing each 
element of the original grid into two in each direction, and comprised 2944 elements, 
12000 nodes. and 32832 freedoms. 

3.2. Computational procedure 

The algorithm for locating a Hopf bifurcation will converge only from a very good 
initial guess for the basic flow, the critical Reynolds number Re,, the critical Strouhal 
number St,, and most importantly the eigenvector for the bifurcating solution. 
Approximate values of the critical Reynolds number ( x 50) and Strouhal number, 
or non-dimensional frequency ( ~ 0 . 1 4 )  for flow past a circular cylinder are known 
from experiment (Berger & Wille 1972; Coutanceau & Bouard 1977a, b ;  Friehe 1980; 
Gaster 1971; Gerrard 1978; Hussain & Ramjee 1976; Kovasznay 1949; Mathis, 
Provansal & Boyer 1984; Nishioka & Sat0 1974, 1978; Perry, Chong & Lim 1982; 
Roshko 1954; Tritton 1959, 1971 ; Zdravkovich 1969). The required initial guess for 
this flow was obtained by calculating fist the basic flow at Re = 50, and then 
identifying the complex eigenvalue nearest to 0 + 0.li together with the corresponding 
eigenvector. The Hopf algorithm converged rapidly from this initial guess. 

We then altered the aspect ratio f of the computational domain, and by this means 
produced elliptical bodies with a range of eccentricities ; estimates Reyt and Styt were 
obtained by parameter stepping the Hopf algorithm. These values are of course 
results calculated with a distorted computational domain, 

- 5 r  < x < 15r, -5  < y < 5, (35) 

so the basic flow at Re = Reyt, the complex eigenvalue nearest to O+iStyt, and the 
corresponding eigenvector were recalculated for a grid appropriate to each ellipse that 
covered the prescribed domain (33). These results provided the initial guess for the 
Hopf algorithm, which then converged rapidly in most cases. It did not converge for 
the more extreme eccentricities, for which it was necessary to start from an 
intermediate value of the eccentricity at which the Hopf point had already been 
found. In this way the Hopf point was obtained for ellipses with an eccentricity in 
the range is of course effectively a flat 
plate. 

Initial guesses for the rotated ellipse and flat plate were then obtained by 
extrapolation from the results for the unrotated ellipse and plate, on the assumption 

to 2.5. The ellipse of eccentricity 
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FIQURE 4. Finite-element grid for simulating flow past a circular cylinder. 

FIGURE 5. Detail of the grid for simulating flow past an ellipse with major axis 1.0 and minor 
axis 0.5, oriented at an angle of 60' to the flow. 

that the Hopf point is essentially determined by the area of the body presented to 
the flow, that is that the Hopf point is determined by ReD only. The results show 
that although this assumption provides a good initial guess at small rotations, it 
becomes progressively poorer as the rotation is increased. For the isosceles triangle 
appropriate initial guesses were obtained by a combination of extrapolation from 
results for the flat plate and parameter stepping. 

Although this procedure sounds quite complicated, it was straightforward in 
practice once the Hopf point for the circular cylinder had been found. Our experience 
emphasizes the great, advanta.ge of determining an initial guess by parameter stepping 
from some related problem for which the Hopf point is already known. 

In the original problem we were fortunate that experiment had already indicated 
the position of the Hopf point for the circular cylinder. If this result had not been 
available, it  would have been necessary to search laboriously for potential Hopf 



Finite-element study of the onset of vortex shedding 35 

Flow 
calculation 

Eigenvalue 
calculation 

Hopf 
algorithm 

Assemble matrix 
Assemble right-hand side 
LU decomposition and forward elimination 
Back substitution 
Assemble extended matrix 
Assemble extended right-hand side 
LU decomposition of extended matrix and forward 

Back substitution 

Assemble matrix 
Assemble right-hand sides 
LU decomposition and forward elimination 
Back substitution 
Assemble extended matrix 
Assemble extended right-hand side 
LU decomposition of extended matrix and forward 

Back substitution 

elimination 

elimination 

Coarse grid 
(8320 

Freedoms) 

3.5 

3.2 
0.1 

4.0 
2.4 

16.0 

0.3 

2.8 

3.4 
0.2 
8.8 

16.0 

0.3 

Fine grid 
(32 832 

Freedoms) 

11.0 

31.4 
0.5 

11.0 
8.3 

213.4 

1.5 

11.0 

31.4 
0.9 

35.3 

213.4 

1.5 

TABLE 1. Computational times (s) for the various matrix operations for the coarse 
and fine grids 

points by first choosing Reynolds numbers, and then for each Reynolds number 
scanning the neighbourhood of the imaginary axis for complex eigenvaiues; once an 
eigenvalue with negative real part has been found, it is simple to locate the 
corresponding Hopf bifurcation. However, the search for complex eigenvalues is easy 
to automate. This automatic scanning was used to search for potential ‘resonances’ 
of the Hopf eigenvalue for flow past the cylinder. None were found in the range 
0 < St < 10. 

3.3. Computational costs 
It is worth adding a note on computational costs. The cost of determining Re, and 
St, for a particular problem depends upon whether it is possible to use the Hopf 
algorithm alone, starting from a good initial guess, or whether it is necessary to 
calculate first the flow, then an eigenvalue, and then use the Hopf algorithm; and 
of course the cost depends upon the number of iterations at each stage. 

Each iteration of the flow calculation has five steps: assemble the matrix gx, 
assemble the right-hand side g, an LU decomposition, a forward elimination, and a 
back substitution. Typically four or five iterations suffice for convergence to eight 
or more significant figures. 

The cost of the eigenvalue calculation depends upon the chosen algorithm. For 
example, complex inverse iteration with no update of the eigenvalue requires the 
reckoning of only a single extended matrix, and hence only one LU decomposition; 
each iteration involves only assembling an extended right-hand side, a forward 
elimination, and a back substitution. Typically five to twenty iterations provide an 
eigenvalue and associated eigenvector sufficient for a good initial guess for the Hopf 
algorithm, provided that the initial guess for the frequency was adequate. 
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Axis parallel 
to flow ad 

10-4 
0.1 
0.3 
0.5 
0.8 
0.9 
1 .o 
1.2 
1.4 
2.0 

Re, 
27.767 
29.680 
32.765 
35.704 
40.990 
43.100 
45.403 
50.586 
56.478 
76.794 

Comment StC 
0.12368 Flat plate 
0.12679 
0.13085 
0.133 21 
0.13514 
0.13568 
0.136 26 Circular cylinder 
0.13766 
0.13943 
0.14644 

TABLE 2. Critical Reynolds number and corresponding Strouhal number for a range of ellipses 
oriented along the flow. The axis perpendicular to the flow has non-dimensional length 1.  The axis 
parallel to the flow has length a,,. 

The first five steps in one Newton-Raphson iteration of the Hopf algorithm are: 
assemble the matrix g,, assemble the appropriate two right-hand sides, LU 
decomposition of the matrix g,, forward elimination, and back substitution. The 
additional steps involve the same procedure but with the matrix A* for the system 
of equations (30). Typically four or five iterations of the Hopf algorithm gave 
convergence to eight significant figures or better. 

The dominant costs in these operations are incurred in the matrix assembly and 
the L U decomposition. Table 1 collects representative CPU (Central Processor Unit) 
times for a CRAYl carrying out calculations with the coarse and fine grids. The 
solver, which uses a very fast frontal method that we have developed, runs a t  speeds 
in excess of 100 MFLOPS (million floating point operations per second) for large 
problems. Some of the matrix operations are combined to increase efficiency, so some 
of the times given in table 1 are for more than one step. These times are only 
representative since the frontal solver performs partial pivoting which has some 
influence upon the speed of computation. Moreover, the times also depend upon the 
ordering of the elements; the chosen ordering gave acceptable times, although it was 
not optimal. 

4. Results 
Calculated values of critical Reynolds numbers and critical Strouhal numbers are 

collected in tables 2, 3, 5, 6 and 7 and illustrated in figures 6, 7 ,  8 and 9. 
Table 2 contains St, for ellipses oriented along the flow, and these results are plotted 

in figure 6. The dimension of the ellipse across the flow defines the unit of length (see 
figure 3a), and to this scale the dimension parallel to  the flow has a length a,, ranging 
between (corresponding to a flat plate) and 2. In  particular for the circular body 
Re, is 45.403 and St,  is 0.13626. The results from the fine grid are Re, = 46.136 and 
St, = 0.13793. It is believed that values of Re, and St, calculated by means of the 
Hopf algorithm using the chosen type of element converge a t  a rate proportional to 
the fourth power of the degree of refinement of the grid. Thus grid converged results 
Regonverged = 46.184 and Stynverged = 0.13804 can be estimated. Calculations with 
significantly finer grids are not currently practicable. 

Table 3 again gives Re, and St, for a range of ellipses aligned with the flow, but 
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FIGURE 6. Re, and St, for ellipses oriented along the flow : (a) Re,, and ( b )  St,. 
(Results obtained by parameter-stepping on r are shown dashed.) 

Axis parallel 
to the flow a,, 

0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 

Re, 
34.847 
36.096 
37.957 
40.351 
42.862 
45.403 
50.693 
56.207 
61.724 
67.477 
73.427 

st, 
0.14256 
0.14028 
0.13815 
0.13695 
0.13641 
0.13626 
0.136 75 
0.13808 
0.13983 
0.141 90 
0.14431 

TABLE 3. Critical Reynolds number and corresponding Strouhal number for a range of ellipses 
oriented along the flow, obtained by parameter stepping on the aspect ratio so that the domain 
is stretched to be - 5 r  c x < 15r where r is the aspect ratio. r is of course equal to the axis of 
the ellipse along the flow 

these results, which are shown by a dashed line in figure 6, were obtained with a 
computational domain (35) distorted so that the aspect ratio equals the eccentricity 
of the ellipse. These results could thus be obtained easily and relatively cheaply by 
parameter stepping from the results for the circular body. Thus a comparison of these 
results with those of table 2 illustrates the effect upon Re, and St, of varying the 
physical domain; such effects are of course most pronounced at extreme values of 
the aspect ratio. We expect that the results of table 3 will become progressively more 
inaccurate as r is  decreased because the corhputational domain is ultimately too small 
to contain a complete eddy behind the body. However, the major purpose of these 
results was to serve as initial guesses for calculations on the standard domain (33) 
and they fulfilled this purpose well. 
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Re st Author Comment Re, 
45.403 45.403 0.136 261 Coarse grid 
46.136 46.136 0.13793 This study IF ine  grid 
46.184 46.184 0.13804 1 Richardson extrapolation 
- 100 0.16 Braza Time-dependent calculation 

50 
100 
50 

100 
50 

100 
50 

100 
50 

100 

o'12) Roshko 
0.17 

0'14) Gresho 0.18 

o'12) 0.15 Berger 

0'12) Tritton 
0.16 

''I2) Freihe 
0.16 

Experiment 

Time-dependent calculation 

Experiment 

Experiment 

Experiment 

3 4 4 3  - - Coutanceau Experiment 

40 - 0.12 Kovasznay Experiment 
48 - 0.12 Nishioka & Sako Experiment 
47 - - Mathis et al. Experiment 

TABLE 4. Comparison of the results of this study for a circular cylinder with experimental results 
and time-dependent calculations. In  most cases we present St values at several Re values greater 
than Re, since Re, was not obtained 

Angle between 
minor axis and 

flow 8" Re, st, 
0 

10 
20 
30 
40 
50 
60 
70 
80 
85 
88 
90 

35.704 
36.392 
38.566 
42.61 1 
49.331 
60.169 
77.080 

101.27 
128.27 
137.86 
140.85 
141.44 

0.13321 
0.13442 
0.13817 
0.14484 
0.15511 
0.17008 
0.19106 
0.21758 
0.24386 
0.25261 
0.25528 
0.25580 

TABLE 5. Critical Reynolds numbers and corresponding Strouhal numbers for ellipses with 
major axis 1 and minor axis 0.5 oriented a t  various angles 0 to the flow 

Table 4 compares our results for the circular body with results from time-dependent 
calculations (Braza, Chassaing & Minh 1987; Fromm & Harlow 1969; Gresho et al. 
1984; Thoman & Szewczyk 1969) and with measured values (Berger & Wille 1972; 
Coutanceau & Bouard 1977a, b ;  Friehe 1980; Gaster 1971; Gerrard 1978; Hussain 
& Ramjee 1976; Kovasznay 1949; Mathis et al. 1984; Nishioka & Sat0 1974, 1978; 
Perry et al. 1982; Roshko 1954; Tritton 1959, 1971 ; Zdravkovich 1969). I n  general 
these experiments or time-dependent calculations were carried out at a Reynolds 
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FIQURE 7. Re, and St, for ellipses with major axis 1.0 and minor axis 0.5, with minor axis at various 
angles to the flow: (a)  Re, and Ref, and ( b )  St, and Stf (Re! and Stf are based on the cross-section 
D presented to the flow, and are shown dashed) 

Angle B" 
0 

10 
20 
30 
40 
50 
60 

Re, 
27.767 
28.153 
29.952 
32.785 
39.931 
52.926 
87.883 

StC 
0.12368 
0.12449 
0.12891 
0.13524 
0.150 67 
0.17596 
0.22407 

TABLE 6. Critical Reynolds number and corresponding Strouhal number for a flat plate 
with its normal oriented at an angle 0 to the flow 

number greater than Re,, which could not be determined precisely by either of these 
means, although there is general agreement that Re, is about 40. We have therefore 
collected from the literature, where possible, values of St for several values of Re 
greater than Re,. It should also be borne in mind that Re, and St, will be affected 
by the choice of domain and boundary conditions in time-dependent simulations, or 
by the experimental configuration. For example, Coutanceau & Bouard discuss how 
the size of the cylinder relative to the overall flow apparatus affects Re,, which they 
find to vary between 34 and 43. 

It should be noted that it is difficult to determine Re, experimentally. In  particular 
it is necessary to ensure that the residual turbulence in the inlet is reduced to a very 
low level as otherwise this can excite the periodic flow at Re below Re,. Such residual 
turbulence is probably the reason for the slightly low values quoted by Coutanceau 
& Bouard. It should be noted that the calculated results agree very well indeed with 
the recent experimental results of Mathis et al. (1984) and Nishioka & Sat0 (1974, 
1978). 

Table 5 and figure 7 collect values of Re, and St, for ellipses with major axis 1 and 
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0.1 J 
L o o 10 20 30 40 50 60 70 80 90 e 

Height h Re, St, 

. I ' I I I I I ' I  10 20 30 40 so 60 70 80 90 e - 

(0) 
0.1 
0.3 
0.5 
0.8 
1 .o 
1.2 
1.4 
2.0 

(27.767) 
27.707 
29.270 
31.196 
34.318 
36.370 
38.343 
40.224 
45.324 

(0.12368) (Flat plate result) 
0.12347 
0.12692 
0.13066 
0.13554 
0.13797 
0.139 78 
0.141 10 
0.14324 

TABLE 7. Critical Reynolds number and corresponding Strouhal number for isosceles triangles 
oriented towards the flow with varying height h 

minor axis 0.5, the minor axis being disposed at various angles to the flow (see figure 
3b). Figure 6 also plots values of Re? and St?, which are based upon the cross-section 
D of the ellipse perpendicular to the flow rather than upon L,. The results presented 
in this way show that to a large extent the critical Strouhal number only depends 
upon the perpendicular cross-section of the body although the critical Reynolds 
number reflects also the overall shape of the body. 

In table 6 and figure 8 appear values of Re, and St, for flat plates (strictly for ellipses 
with minor axis which are oriented at various angles to the flow (see figure 3c).  
Re, and St, for various isosceles triangles are found in table 7 and figure 9. The 
base of each triangle is perpendicular to the flow and the apex points upstream (see 
figure 3 4 .  

Figure 10 represents the flow X, at  the Hopf bifurcation, for flow past a circular 
body, and figures 11 and 12 the real and imaginary parts 5,  and Ci of the bifurcating 
eigenvector. These figures show both the streamlines and the velocity vectors. The 
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FIGURE 9. Re, and St, for various isosceles triangles that are oriented with their apices directed 
into the flow: (a) Re,, and ( 6 )  St,. o indicates flat plate result. 

FIGURE 10. Streamlines and velocity vectors for flow X, at the bifurcation marking the 
transition to oscillatory flow. 
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FIQURE 1 1 .  Streamlines and velocity vectors for the real part c, of the bifurcating eigenvector. 
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FIGURE 12. Streamlines and velocity vectors for the imaginary part Ti of the 
bifurcating eigenvector. 
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FIQURE 13. Snapshots of the instantaneous streamfunction, at  intervals of Q the period of 
oscillation, for a flow at  Re slightly greater than Re,. 

stream function II. is obtained from the vorticity GI by solving with finite elements 
the equation 

For values of Re slightly greater than Re, the solution for the flow is of course of 
the form 

X,+a[i& cos (ut-$)-Ci sin(ut-$)I, (37) 

for some phase $ and small amplitude a, where a = O((Re-Re,);). This is the 
theoretical behaviour expected near a Hopf bifurcation. Mathis et al. (1984) have 
confirmed experimentally that the amplitude behaves like O( (Re - Re,);). Figure 13 
shows a sequence at intervals of Q of a period of oscillation of ‘snapshots’ of the 
instantaneous streamfunction derived by assuming a = 0.2 in (37). This approximates 
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the solution a t  some value of Re greater than Re, that  cannot be determined directly 
by the methods adopted in this study. 

The flow X, and the real and imaginary parts of the bifurcating eigcnvcctor for 
the other body shapes have the same general behaviour as that  illustrated for the 
circular cylinder. 

5. Conclusions 
The values of the critical Reynolds number Re, for the onset of periodicity in flow 

past a cylindrical body, and the corresponding Strouhal number St, or non- 
dimensional frequency, are in good agreement with the results of time-dependent 
calculations (Braza et al. 1987; Fromm & Harlow 1969; Gresho et al. 1984; Thoman 
& Szewczyk 1969) and experiment (Berger & Wille 1972; Coutanceau & Bouard 
1977a,b: Friehe 1980; Gaster 1971; Gerrard 1978; Hussain & Ramjee 1976; 
Kovasznay 1949; Mathis et al. 1984; Nishioka & Sat0 1974, 1978; Perry et al. 1982; 
Roshko 1954; Tritton 1959, 1971 ; Zdravkovich 1969), although neither time- 
dependent calculation nor experiment can give very accurate values for Re, and St,. 
The behaviour of Re, and St, as the body shape and orientation are varied are in 
accord with physical expectations. 

The usefulness of the approach via extended systems is shown. It enables Re, and 
St, to be determined very accurately. It is also much cheaper than time-dependent 
calculations for determining these quantities. The approach using extended systems 
does not, of course, give directly the time-dependent behaviour at values of Re greater 
than Re,, which can be obtained from time-dependent calculations. Thus extended 
systems and time-dependent calculations are to some extent complementary. 

The use of extended system techniques also allows symmetries of the problem to 
be exploited in order to  reduce the computational cost dramatically, which cannot 
be done in time-dependent calculations. I n  the case of flow past a circular cylinder 
for example, the steady flow is symmetric under reflections about the x-axis, while 
the bifurcating solution is antisymmetric. Both the calculation of the flow and the 
calculation of the Hopf bifurcation point can be carried out on the half grid y > 0, 
searching for a symmetric flow solution and antisymmetric bifurcating eigenvector. 
This reduces the cost by a factor of about eight. 

One final comment that can be made is that the finite-element method is ideally 
suited to  bifurcation studies. It is easy to modify a finite-element package to handle 
the extended systems; and of course the finite-element method is designed to  handle 
complicated geometries as shown by the examples considered here. 

I n  future work we intend to examine the onset of periodic behaviour in flow past 
bodies in unbounded domains, which can be treated in the same way as above, 
although more care is needed with the boundary conditions a t  infinity. We also intend 
to study the behaviour of the periodic solution beyond the Hopf point using 
extensions of these techniques. 
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